
www.manaraa.com

The Computer Science of Everyday Things

Harold Thimbleby

Computing Science
Middlesex University

Bounds Green Road, London, N11 2NQ

http://www.cs.mdx.ac.uk/harold

Abstract

Technology is fashionable, wonderful and getting
better; Moore’s Law predicts substantial, sustained
improvement. Yet the usability of ‘everyday things’
is low (video recorders being a notorious example).
It seems to follow that improvements must be
sought in areas outside technology, such as human
factors. But a premise is wrong: in fact, the
technology — the embedded computer science — is
appalling!

Obsolescence, a symptom of Moore’s Law, hides
flawed design: poor products are replaced rather
than fixed. The poor quality of the computer science
of everyday things is eclipsed by the hope for fixing
today’s problems with tomorrow’s consumption.

This paper reviews Moore’s Law and the
usability of everyday things; it shows that
professional computer science can improve
usability with ease. Improvement will be essential
when ethical and environmental issues become, as
they will, unavoidable design criteria.

Keywords Moore’s Law, User interfaces,
Mobile phones, Programming user interfaces,
Environment.

1 Introduction

Almost all modern everyday things — from mo-
bile phones, cameras, central heating controllers,
calculators, to wristwatches and airplanes — work
because of embedded computer programs. While
most are technically impressive, their usability is
often low. Usability problems are not just irritat-
ing, but are costly and stressful, and hazardous in
many contexts: whether the users concerned are
airline pilots, office workers using photocopiers, or
home users struggling with video recorders.

It is popular to argue that everyday things are
harder to use than they need be, and that improve-
ments must be sought in human factors, that is in
the study of users and their tasks [16], and in the
study of ecologies and context of use [15], etc. The

Proceedings of the Australasian User Interface

Conference, Bond University, Gold Coast, Aus-

tralia, January 29–February 1, 2001.

lack of “user centred design” is the conventional
reason for the failure of almost all programmed
systems [10].

Indeed, as industry can evidently sell to con-
sumers without improving usability, business prac-
tice itself creates a source of usability problems that
is again of non-technical origin.

Usability, then, as a field has become dominated
by marketing, social, empirical and statistical
methods alien to computer scientists. The broad
emphasis on human factors encourages computer
scientists, further, to dismiss usability as irrelevant
to their focus. Indeed, in simple terms computer
science appears remarkably successful (cf. Moore’s
Law, §2, below): superficially confirming that
usability problems must be solved elsewhere.

But successful interaction clearly requires un-
derstanding of both humans and computers. The
computer science of everyday things has ignored
usability (we give examples below), and its stan-
dards are woeful. This factor of low usability is
ignored not just by designers and usability workers
but also by computer scientists. There is a serious
educational problem, both at the level of educating
technologists to program user interfaces better, and
at the level of encouraging consumers to demand
higher standards of lifetime usability, which could
easily be provided.

2 The “impressive” Moore’s Law

Technology is getting better, and has increasing
performance over time. We can represent this by
the graph (see Figure 1) using a curve of posi-
tive slope (it is not necessary to worry about the
precise shape of the line, or exactly what ‘per-
formance’ is measuring). For any particular task
the user has, some minimal level of performance p
will be required. From the graph it is clear that
there is a crossover when the lines intersect, at
performance = p and time = t. Before time t,
technology is delivering inadequate performance;
after t, technology can deliver more than adequate
performance.

Norman [17], crediting Christensen [3], makes
the following argument. Before the crossover time

www.manaraa.com

Performance

p

t

Time −→

Figure 1: Perfomance of technology increases with
time (curved graph). After time t perfomance exceeds
the crossover value p.

t, manufacturers need only promise technical ca-
pability (which is easy, since technology is getting
better all the time). After time t, products get
distinguished not by their performance, which is
more than adequate, but by more subtle — and
harder to supply — properties like usability. For
technologies like wrist watches, we are long past the
threshold, and they are now fashion items, that is
chosen on criteria mainly other than technological.
But for many everyday things, like word processors,
we should also be well beyond the crossover. So
why aren’t word processors much better?

Manufacturers can increase consumers’ expecta-
tion of p, by providing or promising new ‘essential’
features: it is in their interest to increase p, because
this postpones the crossover. Thus many everyday
things have numerous features, a factor influencing
their usability.

The slope of the graph obviously reflects
Moore’s Law. Moore’s Law, eponymous of Intel’s
Gordon Moore [13], says that computer technical
infrastructure improves by a factor of two every
18 months. By infrastructure, take your pick:
network bandwidth, processor speed, storage
capacity, . . . progress is relentless. We often
do not wonder about Moore’s Law beyond the
excitement: everyone hopes for better products
tomorrow.

The law has been followed closely and by many
companies. If Moore’s Law was an observation
about scientific progress, we would expect more
variance. We would not expect IBM, Intel and
Motorola to be neck and neck; we would not expect
the law to apply to the USA and to Japan. It is
too coincidental [2]. More likely, then, the law is an
observation about capitalism rather than a surpris-
ingly uniform rate of technological breakthrough.

Stimulating consumer demand by enhancing
performance expections is a very creative activity,
and requires insight into market behaviour.
Coincidentally most creative professionals are not
technical: the people employed by industry to

enhance products do not understand or realise the
limitations of the embedded computer science (§4).

User interfaces are complex and problems in
usability rarely show up immediately. By the time
a user becomes dissatisfied with a product, Moore’s
Law ‘ensures’ new products are available. There is
little need for manufacturers to make old products
better if, by the time their limitations are discov-
ered, users prefer a new product to a fixed older
product. Thus Moore’s Law encourages loss in de-
sign quality: manufacturers can assume customers
prefer to upgrade to a faster or more featured prod-
uct. In other words, provided the product lasts
long enough — a few months — it need have no
long-term usability features: this makes it easier to
design, and to get away with poor quality design
methods. Even if a product fails completely, con-
sumers would probably rather pay to upgrade than
wait for it to be repaired.

Moore’s Law encourages fatalistic computer sci-
ence. Your current programs will run 25% faster in
six months with you doing absolutely nothing. In
particular because memory gets cheaper, programs
get bigger. Moore’s Law removes pressure to im-
prove program quality: programmers can always
postpone addressing bloat.

Suppose, by way of example, a program is so
complex that it will take 3 years to run. If its pro-
grammers delay 18 months, and then start, there
will be cheaper, faster computers. The program
would still finish on the same date. The program-
mers could have 18 months idling, and still achieve
the same goal. Whatever you want to do, you may
as well do nothing to start with.

Enthusiasts of Moore’s Law talk huge numbers.
Processor speed has improved by s, memory has
increased by m, and, wow the product has twice as
many zeros! But if we have more memory we need
a faster processor just to take advantage of it in
the same time. If there is memory not accessed, it
is being used inefficiently; thus improvement might
be better quantified by the ratio m/s, which as-
sumes the computer is used to capacity in both
speed and memory. Talking huge products s × m,
while superficially impressive, ignores usage.

Since the ratio m/s, whose dimension is time, is
more-or-less constant, it explains why, despite the
näıve view of Moore’s Law, computers still take
as long to boot! (Hence Machrone’s Law: the com-
puter you want always costs $5000.) It comes down
to a business issue, we want computers that are
more powerful than our competitors, and we can af-
ford to finance just so much to get the leverage. De-
spite Moore’s Law, users still take approximately
the same sort of time to perform tasks.

If the growth of Moore’s Law meant anything
real for users, we would already have had a huge
computer revolution: doubling every 18 months

www.manaraa.com

is a factor of a million after 30 years. Social life
has been transformed by transport, yet the perfor-
mance gain is meagre compared to computer tech-
nology’s: 200, perhaps as little as ten.1 The trans-
formation transport has made within such a small
factor suggests that the tera-factors for computers
are measuring something of little significance to hu-
mans. Humans do want to get to other places and
they do want to move manufactured goods around
the world, but they do not need computers to have
more memory or higher density processors. What
they do want is to get tasks done faster and better.
Computers are not doing that with anything like
the spectacular improvements the proponents of
Moore’s Law would like us to believe, except in
a few specialised areas [10].

Human activities have not been speeded up,
and certainly not speeded up by astronomical fac-
tors. The growth described by Moore’s Law focuses
on technology not impact, encourages industry to
postpone worrying about usability, encourages con-
sumers to try to keep up with changing fashions,
and all despite continual obsolescence (§7). Ironi-
cally market churn, the corrollary of Moore’s Law,
encourages a low standard for the computer science
of everyday things, which in turn makes a causualty
of usability.

3 Consumer (in)action

The automobile industry was changing rapidly in
the 1960s, and in some the problems of computer
science at the turn of the 21st. century reflect it.
In the 1960s, some cars were badly designed and
unsafe to drive. As Ralph Nader exposed [14, 22],
the prevailing cultural assumption was that drivers
had accidents, and therefore drivers were respon-
sible for the behaviour of cars. If an accident is
“driver error” it is not the manufacturer’s problem,
but is, say, a human factors or contextual prob-
lem. If a parked car rolls down a hill (an exam-
ple from [14]), the driver should have applied the
parking brake properly, they should have turned
the wheels so the car would roll against the kerb,
and so on — they should be better trained, the
handbrake should have better affordance . . . all
perfectly constructive observations. That the car
has been badly engineered and has an unsafe park-
ing brake is thereby disguised. Similar remarks
could be made about “pilot error” and the generic
excuse, the “human factor.”

Thus we are persuaded that usability problems
are human problems. If users have usability prob-

1Before the Industrial Revolution people moved between
the speed of walking or of a horse, say 5 to 70km/h; today
you can (unsafely and expensively) travel on land at up to
1000km/h, though most transport is undertaken by lorries
travelling around 110km/h (much less if we average over the
journey rather than take maximum legal speeds).

lems, they should learn how to use things properly.
Our society is certainly a complex place, and people
do need to be technology-literate because that is
how the world is. But this practical response can
be used as an excuse to make systems over-complex
because users will take it upon themselves to learn
how to use them. Indeed, manufacturers often com-
modify their learning material, thus making further
profit by providing systems that require additional
training!

The prioritisation of safety in car design came
about because of consumer action, stimulated by
Nader’s damning exposés. Currently consumers of
everyday things are unaware usability problems
are avoidable. People working in industry are
themselves consumers of everyday things —
they may even be employed because of their
eager following of technological fashion; they
are not immune from the cultural assumptions.
Although consumers could be focussed [8] towards
usability, the main driver for change will be from
technologists. Thus, the rest of this paper is aimed
at computer scientists, arguing (i) the computer
science of everyday things is embarassingly bad
(ii) the computer science is easy to fix, and to
do so would have valuable benefits — achieving
environmental as well as usability benefits.

4 Buggy everyday things

There are many gadgets representing bad computer
science, but most are so bad that they are impossi-
ble to describe clearly! Perhaps the best example,
because it is in principle straight forward, pervasive
yet inexcusably bad, is the handheld calculator.

Hand held calculators are a mature technology.
Calculators have well-defined requirements, of ac-
curacy and performance and so on. There have
been many generations of calculator designs, and
the manufacturers have had many opportunities to
step their production to fix problems. The only
limitation on calculator quality is manufacturer in-
clination. Research into calculator user interfaces
has a twenty-year background [25, 29].

Casio is the leading manufacturer of hand held
calculators. Two of their basic models are the SL-
300LC and the MC-100, which look very similar.
The SL-300LC is shown in Figure 2.

• Pressing the 9 keys 100+17.5% (e.g., to cal-
culate 17.5% tax on £100) on the SL-300LC
gets 117.50. The MC-100, with exactly the
same keystrokes, gets 121.21212. Two similar-
looking, confusable, calculators, made by the
same manufacturer, do different things.

Since the
✄ �

%
✂ ✁

key is unpredictable (from calculator
to calculator, and even in different contexts in the
same calculator), users soon avoid using it, thereby

www.manaraa.com

Figure 2: The Casio SL-300LC. Note the highly-
visible self-advertising memory keys in the middle of
the top row of buttons.

‘solving’ the usability problem with their own work
around. Thus with hard effort they succeed, and
because of their investment in solving problems it
becomes harder to question the overall appropri-
ateness of the device for their tasks.

Both calculators have memories, which (appear
to) function identically. The button

✄ �

MRC
✂ ✁recalls

the stored number and displays it, but pressed
twice in succession it sets the memory to zero.
The button

✄ �

M+
✂ ✁

adds the displayed number to
memory, and

✄ �

M−
✂ ✁

subtracts from the memory.

• We can assume that the memory is there for
a purpose: to store numbers, and perhaps es-
pecially to store numbers that have been cal-
culated (since other numbers are likely to be
easily available). How can a number calculated
and displayed be stored in memory? It is very
hard to work out what to do.2 Memory, de-
spite high-visibility keys giving the impression
of simplicity, is very difficult to use.

Arguably, memory should save paper and help
users do sums more reliably. Yet most users
(especially those that need calculators) would
need a scrap of paper to work out how to avoid
using paper to write down the number! Evidently
memory is not provided to make the calculator
more usable but is a feature to increase p (see
Figure 1).

Casio has been making calculators for a long
time, and the two calculators are not “new” in any
way. It is not obvious how Casio can justify either

2Pressing
✄ �

M+
✂ ✁

adds the display to memory, and only
makes the memory equal the display if it already contains
zero, which it may not. To make the memory zero, you have

to press
✄ �

MRC
✂ ✁twice, but pressing it the first time sets the

display to the memory, which loses the number you wanted
to store. The solution is not easy, and there is no solution
that avoids the risk of calculator overflow. (If you need paper
to work it out, why not use the paper for the memory?!)

the differences or the curious features shared by
both calculators. Neither comes with user manuals
or other information that warn of or reveal any
problems.

Calculators are impressive, especially if a
prepared salesman shows you them going through
some calculations. It is possible to demonstrate
the memory in action, apparently working. Only
some critical thought would determine that it is a
very peculiar feature.

4.1 More examples

A cynical reader might take the Casio calculators
as specially selected (but see [29]). This section
gives a brief selection of problems to illustrate the
diversity of problems. All should have been easily
detectable, and all are easily avoidable in principle.
See [9, 18, 20] for examples of usability problems
with safety-critical devices, where there is an obli-
gation improve usability.

The Sony television KV-M1421U has a remote
control, the RM-694. Not only are their colour,
number and layout of buttons different, but the
user interfaces are unrelated: they work in com-
pletely different ways — which is obvious, e.g., from
their statecharts [27]. One concludes either Sony
never specified the user interface, or did not worry
about the gratuitous differences.

The Panasonic Genius microwave cooker has a
clock. The user interface allows the clock to be
set to any number, 0000 to 9999. Despite the
impression that it may be a 24 hour clock, it only
runs when set to a valid 12 hour time. Nothing
gives any indication why the clock will not run
when it is set to a time such as 2230 [23, 31].

The Nokia 5110 mobile phone has a menu-
driven user interface providing access to ‘all’
the phone’s functions (see §5). However some
functions, such as keypad lock, are not in the
menu structure. Thus a user without the phone’s
manual may be unable to find such functions.
There is no reason why all functions should not be
in the main menu.

The De Longhi Pinguino [5] air conditioner can-
not be used without the user manual. There are
delays between pressing buttons and things hap-
pening, so a user might press a button twice (to
really do something) but this resets the mode of the
device before it has even started. When the device
is running, its “on” light is off. A front panel light
labelled “memo control” is described in the manual
as meaning that there is a three minute wait (if it
is flashing) or that the air conditioner is in cooling
mode (if it is on continuously). It is possible to
press the buttons on the front panel to get all the
lights to come on in interesting patterns; this is
presumably a test mode (or perhaps a salesroom

www.manaraa.com

eye-catching feature), but the manual does not de-
scribe it.

The JVC HRD580-EK video recorder has the
opposite problem [21]. It has features that cannot
be used with the user manual. The manual has
textual descriptions of complex operations (such as
tuning in the VCR to UHF channels). Reading
these sections is time consuming, yet the corre-
sponding features on the VCR have short time-
outs. So by reading the manual while trying to per-
form the operations described ensures the VCR will
time-out: then the user will be reading the wrong
part of the manual to explain what the VCR is
doing! What the user is reading becomes counter-
productive. (One solution to the system/manual
synchronisation problem is for the device itself to
present instructions to the user: since it ‘knows’
what state it is in, it can always present the appro-
priate sections of the manual [1].)

There is not space here to analyse these assorted
criticisms further. Each unusable system is unus-
able in its own way; the faults are too varied to
easily bring into clear comparison. (See [26] for a
systematic analysis of a long list of usability prob-
lems with a single product.) One reason why faults
persist is that nobody has conceptual leverage on
the problems: manufacturers employ production
processes that result in incoherent usability issues;
nobody understands the results.

5 Computer science applied

We need conceptual leverage not on problems, in-
teresting as they may be, but on solutions. User
interfaces might be improved by better computer
science, but can improvements be achieved system-
atically? In this section we outline a computer
science appraisal of the Nokia 5110 mobile phone’s
user interface. We provide evidence that applying
elementary computer science will improve user in-
terfaces.

5.1 More efficiency,
based on Nokia’s design

Full details of the example discussed in this section
can be found in [28].

The Nokia 5110 handset organises most of its
functions in a tree, which is presented to the user as
a menu. Clearly the design assumption is the user
will search the tree to find functions to activate.
Computer scientists are familiar with search, and
indeed with search trees.

A Huffman tree is the most efficient way to
organise a search tree (given that there is a fixed set
of keys) [28]. We could simply determine the aver-
age cost per function and compare it with Nokia’s
design, but the so-called cost of knowledge graph,
itself introduced by psychologists to evaluate user
interfaces, shows increasing efficiency the longer

it is used for the Huffman over Nokia’s original
design; after 500 key presses, a user of the Huffman
design is twice as efficient.3

It can be pointed out that Nokia’s design
may have virtues other than trying to minimise
keystrokes; certainly, a Huffman tree is optimal
precisely because it has no other purpose than
to be efficient. However all Nokia functions have
a shortcut code, which (as it is so-named) is
presumably to provide a brief alternative. Again,
the Huffman tree lends itself to an improved code;
moreover, since Nokia do not use their shortcut
codes efficiently, we can provide both Nokia’s
original and a non-overlapping code: this gains
the best of both worlds (whatever the ‘best’ of the
Nokia world is supposed to be). Nokia’s shortcuts
have an average access cost of 3.64 keystrokes; the
combined approach has an average cost of 2.87
keystrokes.

Such improvements can be made by applying
purely routine computer science to user interface
design. The next section illustrates what we can
do when more imagination is brought into play.

5.2 More efficiency,
based on a novel design

Full details of the example discussed in this section
can be found in [12].

Most keys on the Nokia have letters on them,
and just as they are used for entering names (e.g.,
SMS messages) they could be used for searching for
functions. Reference to any algorithms book will
find numerous ways of making good use of keys for
searching! Here, we explore hash codes.

Given a function name, such as Call Waiting
we find its hash code by using the Nokia’s stan-
dard keypad. Thus, the first two letters of Call
Waiting , “C” and “A,” are on the

✄ �

2
✂ ✁key, and

the third and fourth letters are on
✄ �

5
✂ ✁, thus the

hash code of Call Waiting starts 2255. . . As a
user enters a hash code, the new design displays (in
a scrolling list) all functions that match the hash
code. To disambiguate the code, the user can either
use up and down arrows (as in the conventional
Nokia design), or enter more digits. If the user
presses the

✄ �

C
✂ ✁key, the last digit is deleted, and

the hash code looked up again and the display is
refreshed.

Marsden built a simulation of the original Nokia
and the new design, and compared their use. (Both
designs used the same screen image.)

Of the experimental scenarios completed on
the new design, users achieved an average 9.54

3Due to bugs in Microsoft Word it turned out, for
unfathomable reasons, to be impossible to place a graph
in the original Word version of this paper to illustrate
this point. Again, this is a computer science problem:
bad programming in a consumer software package. (This
published version was formatted using TEX.)

www.manaraa.com

key presses, in comparison to the Nokia design
where 16.52 key presses were required. This was a
strongly significant result (p < 0.001) with users
requiring approximately 7 fewer key presses, on
average, to access the functions on the hash code
design.

The overall mean times (not key press counts)
for the hash code phone was 33.42 seconds, com-
pared to 42.02 seconds for the original. The im-
provement, though, was not consistent enough from
person to person for a statistically significant dif-
ference to be asserted.

A computer scientist would wonder why the al-
phabetic labels are not more sensibly organised. Of
the 12 available keys, only 9 are used, and the allo-
cation of letters to keys does not reflect frequency
of use. There are international standards of letter
allocation, but as phones differ, they cannot be an
important consideration — and the silliness of the
international standards merely begs the question
why the standards bodies do not ask computer sci-
ence questions either.

5.3 Other benefits

Both examples above rely on a specification of the
Nokia device. Once the device is specified, it is easy
to devise and analyse many improvements.

The inconsistencies in the actual user interface
of the Nokia suggest that Nokia do not use a pro-
fessional computer science approach to user inter-
face implementation.4 That is, given a more-or-
less formal approach inconsistencies are hard to
implement, whereas in an informal approach incon-
sistencies are easy if not an expected consequence!
It is arguable that consistency makes devices eas-
ier to use (outside of games); certainly consistency
makes user manuals easier to write and shorter.
In fact user manuals can be generated, at least in
part, automatically [30] — then, not only can user
manuals be used concurrently early in the design
process, but they can have guarantees (if desired)
that they are complete and correct.

6 Programming the user interface

Computer scientists routinely design computer pro-
grams to be efficient and correct. We need to see
the user as at least as important as a computer,
and the user interface as a program for the user.
User interface design then becomes a matter of
“programming the user.” Many problems in user

4Two examples: short cut codes are not displayed

uniformly from function to function; the
✄ �

C
✂ ✁key behaves

differently (unnecessarily) in different functions. In Phone

book , while entering a number,
✄ �

C
✂ ✁deletes digits, whereas

in Clock , again while entering a number,
✄ �

C
✂ ✁goes up a level

in the menu hierarchy. In Clock , then, it is not possible to
correct numbers: all digits have to be entered correctly first
time.

interface problems then come down to failing to
provide the user with a correct and efficient inter-
face.

That the user interface also needs to be com-
putable is obvious — but this is an idea that seems
to be ignored in almost all interfaces! Even such
simple tasks as determining a sequence of moving
a cursor from one screen position to another in
Microsoft Word are undecidable [24].

Once user interfaces are seen in this light, then
many ideas from computer science can be applied.
This paper showed how familiar algorithms can be
applied to user interfaces; elsewhere we have ex-
plored applying ideas like declarative programming
to user interfaces [25].

Given that many user interface problems can
be attributed to bad computer science, much of
conventional empirical usability work is misplaced,
at least while it tries to understand or make user
interfaces look better without changing the under-
lying way they are implemented.

There are numerous reasons why change will be
difficult, including:

1. Some human factors researchers working in
usability are explicitly trying to find ways of
camoflaguing problems in user interfaces [19].

2. Most human factors trained professionals do
not understand computer science, and there is
a professional division between the two sub-
jects.

3. The accurate computer science description of
typical user interfaces is too hard to under-
take, creating the impression that computer
science cannot speak on the topic. In con-
trast, user problems are relatively easily ob-
served and measured. This makes human fac-
tors salient, but it describes symptoms of com-
puter science problems rather than helps un-
derstand or avoid their cause.

4. Because all user interfaces involve people, very
similar empirical methods can be applied very
widely. In contrast almost all computational
approaches are particular — for example, dis-
crete systems methods would be inappropriate
for virtual reality; techniques for speech are
inappropriate for graphics — and much harder
to generalise. In comparison to human factors
experts, computer scientists seem to know rel-
atively little about user interfaces in general.

5. User interface design is done by industrial de-
signers, again who do not understand com-
puter science.

6. Because of the market demand, practising
computer scientists, even ones not working in
user interfaces, are trained to a low standard.

www.manaraa.com

7. Manufacturers put their best programmers
onto tasks that must work correctly. In a
mobile phone, say, these will include battery
management and radio communications.
Customers will notice quickly if the phone
does not work at all; but most customers will
blame themselves when they find the user
interface tricky. Thus manufacturers put their
worst programmers onto user interfaces.

8. Computer scientists who develop a product are
familiar with its user interface. Their knowl-
edge and experience will make it (and in gen-
eral, all devices) much easier for them to use.
Therefore computer scientists discount the ev-
idence of usability studies.

9. Because it stimulates consumption, users are
encouraged to blame themselves rather than
the products they buy. Researchers, too, are
consumers with similar stakes in the usability
of the everyday things they own. It is unusual
and depressing to question the design of prod-
ucts you have chosen to buy, especially if it
brings into question the standards of your own
profession!

7 Sustainability and ethics

With all the reasons against improving user inter-
faces, where will improvement come from?

Moore’s Law apparently underwrites manufac-
turers’ confidence in faster and more powerful pro-
cessors for their products. Manufacturers can an-
ticipate adding features to systems without seri-
ously impacting their performance. Equally, they
can anticipate users preferring to replace their cur-
rent products with new ones — users prefer to
replace rather than have inferior devices fixed. By
the time users find problems with user interfaces,
the market will have moved on and the users can
be promised their problems will be fixed by new
features.

The result of this is continual replacement. In-
dustry benefits, and consumers willingly become
fashion followers. Mobile phones, for example, are
not sold on their effectiveness for communication
but on their status value.

There is a serious consequence: what happens
to all the obsolete devices? In the UK, 900 000
tonnes of mostly toxic waste electronics is buried
annually in land fill sites. This is not sustainable.
Some notable efforts have been made to recycle,
for instance shipping computers to the third world
— but this is merely shifting the toxic waste
from one back yard to another. Manufactuers
may be persuaded by legislation [4] to use more
environmentally-friendly materials and processes,
but this does not address the core problem.

The computer science of everyday things has
been so bad for so long that we all take it for
granted. It is time to design user interfaces so they
are robust, so they can be upgraded. These are
conventional computer science issues.

There is not space to cover further ethical issues;
but see [11], which shows that car radios are a
widespread, unethical, example of dangerous user
interfaces, and see [6], which discusses ethical de-
sign more generally.

8 Conclusions

We are caught up in a culture that accepts unus-
ability. Sadly, competent computer scientists seem
aloof from the user interface. This paper showed
that a professional computer science of everyday
things would help improve usability. Computer sci-
entists routinely prove properties of their programs
and worry about their efficiency and correctness:
why not apply these sorts of concern to the user
interface? This paper showed that benefits, of us-
ability and a better environment, will follow.

It is obvious that both computers and human
users both ‘run’ programs (in languages such as
CSP [7] the differences that might seem obvious
in languages like Java disappear). In particular,
users deserve as much attention in design of their
programs (i.e., the user interfaces) as the comput-
ers get in their programs. This paper showed that
standard computer science can be applied to the
user interfaces of everyday things.

User interface design is very much a proper part
of computer science. It is time to show users that
higher standards are possible.

References

[1] M. A. Addison and H. Thimbleby. Intelligent
adaptive assistance and its automatic genera-
tion. Interacting with Computers, Volume 8,
Number 1, pages 51–68, 1996.

[2] J. S. Brown and P. Duguid. The Social Life of
Information. Harvard Business School Press,
2000.

[3] C. M. Christensen. The Innovator’s Dilemma:
When Technologies Cause Great Firms to Fail.
Harvard Business School Press, 1997.

[4] Commission of the European Communities.
Proposal for a Directive of the European
Parliament and of the Council on Waste
Electrical and Electronic Equipment, Volume
COM(2000) 347 provisional. 2000.

[5] de Longhi. Pinguino Electronic eco,
573909/02.97, 1997.

www.manaraa.com

[6] P. Duquenoy and H. Thimbleby. Justice and
design. In M. A. Sasse and C. Johnson
(editors), IFIP Conference Interact’99, 1999.

[7] C. A. R. Hoare. Communicating Sequential
Processes. Prentice Hall International Series
in Computer Science, 1985.

[8] M. Jones, G. Marsden and H. Thimbleby.
Empowering users with usability certificates.
In S. Turner and P. Turner (editors), BCS
Conference HCI 2000, Volume II, pages 37–
38, 2000.

[9] P. B. Ladkin. Analysis of a technical descrip-
tion of the Airbus A320 braking system. High
Integrity Systems, Volume 4, Number 1, pages
331–349, 1995.

[10] T. Landauer. The Trouble with Computers.
MIT Press, 1995.

[11] G. Marsden, P. Duquenoy and H. Thim-
bleby. Ethics and consumer electronics. In
A. D’Atri, A. Marturano, S. Rogerson and
T. W. Bynum (editors), Fourth International
Conference on the Social and Ethical Impacts
of Information and Communication Technolo-
gies, Ethicomp’99, 1999.

[12] G. Marsden, H. W. Thimbleby, M. Jones
and P. Gillary. Successful user interface de-
sign from efficient computer algorithms. In
ACM Conference CHI’2000, Extended Ab-
stracts, pages 181–182, 2000.

[13] G. Moore. Nanometres and Gigabucks —
Moore on Moore’s Law. University Video
Corporation Distinguished Lecture, 1996.
http://www.uvc.com.

[14] R. Nader. Unsafe at Any Speed. Pocket Books,
1965.

[15] B. A. Nardi and V. L. O’Day. Information
Ecologies: Using Technology with Heart. MIT
Press, 1999.

[16] D. A. Norman. The Psychology of Everyday
Things. Basic Books, 1988.

[17] D. A. Norman. The Invisible Computer. MIT
Press, 1998.

[18] E. Palmer. ‘Oops, it didn’t arm,’ a case study
of two automation surprises. In R. S. Jensen
and L. A. Rakovan (editors), Eighth Inter-
national Symposium on Aviation Psychology,
pages 227–232, 1995.

[19] B. Reeves and C. Nass. The Media Equation.
Cambridge University Press, 1996.

[20] N. B. Sarter and D. D. Woods. How in the
world did we ever get into that mode? mode
error and awareness in supervisory control.
Human Factors, Volume 37, Number 1, pages
5–19, 1995.

[21] H. Thimbleby. Can anyone work the video?
New Scientist, Volume 129, Number 1757,
pages 48–51, 1991.

[22] H. Thimbleby. Computer literacy and usabil-
ity standards? In C. D. Evans, B. L. Meek and
R. S. Walker (editors), User Needs in Infor-
mation Technology Standards. Butterworth-
Heinemann, 1993.

[23] H. Thimbleby. The frustrations of a push-
button world. In Encyclopædia Britannica
Yearbook of Science and the Future, pages
202–219. Encyclopædia Britannica Inc., 1993.

[24] H. Thimbleby. Treat people like computers?
In A. Edwards (editor), Extraordinary People
and Human-Computer Interaction, pages 283–
295. Cambridge University Press, 1995.

[25] H. Thimbleby. A new calculator and why it
is necessary. Computer Journal, Volume 38,
Number 6, pages 418–433, 1996.

[26] H. Thimbleby. Design for a fax. Personal
Technologies, Volume 1, Number 2, pages 101–
117, 1997.

[27] H. Thimbleby. Visualising the potential of
interactive systems. In Tenth IEEE Inter-
national Conference on Image Analysis and
Processing, ICIAP’99, pages 670–677, 1999.

[28] H. Thimbleby. Analysis and simulation of user
interfaces. In S. McDonald, Y. Waern and
G. Cockton (editors), BCS Conference HCI
2000, Volume XIV, pages 221–237, 2000.

[29] H. Thimbleby. Calculators are needlessly bad.
International Journal of Human-Computer
Studies, Volume 52, Number 6, pages 1031–
1069, 2000.

[30] H. Thimbleby and P. B. Ladkin. A proper
explanation when you need one. In M. A. R.
Kirby, A. J. Dix and J. E. Finlay (editors),
BCS Conference HCI’95, Volume X, pages
107–118, 1995.

[31] I. H. Witten and H. Thimbleby. User mod-
elling as machine identification: New methods
for HCI. In H. R. Hartson and D. Hix
(editors), Advances in Human-Computer In-
teraction, Volume IV, pages 58–86. Ablex,
1993.

